Application of the Dénes type Symmetric Prime Number theorem to proof of *there exist infinitely many primes of the form* n^2+1

Dénes, Tamás mathematician Email: <u>tdenest@freemail.hu</u>

Abstract

Due to the *Dénes type Symmetric Prime Number theorem* in [Dénes 2017], we prove that *there exist infinitely many primes of the form* n^2+1 .

----- . -----

Definition 1. (Symmetrical prime pair)

Let $N \ge 4$ and $0 \le m_N \le N/2$ be natural numbers. If $p_{N-} = N - m_N$ and $p_{N+} = N + m_N$ are prime numbers, then these are called *symmetric prime pair for N*.

Theorem 1.

If *p* and *q* are arbitrary two prime numbers, then exist *N* and m_N natural numbers, *that p and q are symmetric prime pair for N*.

PROOF

Due to the 1st Theorem in [Dénes 2002], if *p* and *q* are primes then they has the forms $p=6k\pm 1$ and $q=6r\pm 1$ (*k* and *r* are natural numbers). Thus the following cases are possible, where the value of $N = \frac{p+q}{2}$ are always integer:

(1)
$$N = \frac{p+q}{2} = \frac{(6k+1)+(6r+1)}{2} = \frac{6(k+r)+2}{2} = 3(k+r)+1$$
 $(k=1,2,3,...), (r=1,2,3,...)$

(2)
$$N = \frac{p+q}{2} = \frac{(6k+1)+(6r-1)}{2} = \frac{6(k+r)}{2} = 3(k+r)$$
 $(k=1,2,3,...), (r=1,2,3,...)$

(3)
$$N = \frac{p+q}{2} = \frac{(6k-1)+(6r+1)}{2} = \frac{6(k+r)}{2} = 3(k+r)$$
 $(k=1,2,3,...), (r=1,2,3,...)$

(4)
$$N = \frac{p+q}{2} = \frac{(6k-1)+(6r-1)}{2} = \frac{6(k+r)-2}{2} = 3(k+r)-1 \quad (k=1,2,3,\dots), \ (r=1,2,3,\dots)$$

Select the following m_N values to calculated N in (1) - (4):

(5)
$$m_N = \frac{|p-q|}{2} = \frac{|(6k+1)-(6r+1)|}{2} = \frac{6|(k-r)|}{2} = 3|(k-r)| \quad (k=1,2,...), \quad (r=1,2,...)$$

(6) $m_N = \frac{|p-q|}{2} = \frac{|(6k+1)-(6r-1)|}{2} = \frac{6|(k-r)|+2}{2} = 3|(k-r)|+1 \quad (k=1,2,...), \quad (r=1,2,...)$

(7)
$$m_N = \frac{|p-q|}{2} = \frac{|(6k-1)-(6r+1)|}{2} = \frac{6|(k-r)|-2}{2} = 3|(k-r)|-1 \quad (k=1,2,...), \quad (r=1,2,...)$$

Dénes, Tamás mathematician Email: <u>tdenest@freemail.hu</u>

(8)
$$m_N = \frac{|p-q|}{2} = \frac{|(6k-1)-(6r-1)|}{2} = \frac{6|(k-r)|}{2} = 3|(k-r)| \quad (k=1,2,\dots), \ (r=1,2,\dots)$$

As it follows from (1)-(4) and (5)-(8):

(9)
$$N - m_N \stackrel{(1),(5)}{=} 3(k+r) + 1 - 3(k-r) = 6r + 1 = q \\ N + m_N \stackrel{(1),(5)}{=} 3(k+r) + 1 + 3(k-r) = 6k + 1 = p$$
 $(k=1,2,3,...), (r=1,2,3,...)$

(10)
$$N - m_N \stackrel{(2),(6)}{=} 3(k+r) - (3(k-r)+1) = 6r - 1 = q \qquad (k=1,2,3,...), (r=1,2,3,...)$$
$$N + m_N \stackrel{(2),(6)}{=} 3(k+r) + (3(k-r)+1) = 6k + 1 = p$$

(11)
$$N - m_N \stackrel{(3),(7)}{=} 3(k+r) - (3(k-r)-1) = 6r+1 = q \quad (k=1,2,3,...), \ (r=1,2,3,...)$$
$$N + m_N \stackrel{(3),(7)}{=} 3(k+r) + (3(k-r)-1) = 6k-1 = p$$

(12)
$$N - m_N \stackrel{(4),(8)}{=} 3(k+r) - 1 - 3(k-r) = 6r - 1 = q \quad (k=1,2,3,...), \quad (r=1,2,3,...)$$
$$N + m_N \stackrel{(4),(8)}{=} 3(k+r) - 1 + 3(k-r) = 6k - 1 = p$$

The connections (9)-(12) correspond exactly to the *Dénes type Symmetric Prime Number theorem* in [Dénes 2017].

Q.E.D.

The consequence of the Theorem 1. is the following Theorem 2.:

Theorem 2.

For arbitrary *p* prime number there exist *N* and m_N natural numbers, that $p=N-m_N$ and $q=N+m_N$ is prime.

For the following 3th Theorem we use the following known connection:

(13)
$$\sum_{i=1}^{n} (2i-1) = 2\left(\sum_{i=1}^{n} i\right) - n = \frac{2n(n-1)}{2} - n = 1 + 3 + 5 + \dots + (2n-3) + (2n-1) = n^{2}$$

It follows that

(14)
$$\frac{2n(n-1)-2n}{2}+1=2n\cdot\frac{n}{2}+1=1+3+5+\ldots+(2n-3)+2n=n^2+1$$

Email: tdenest@freemail.hu Dénes, Tamás mathematician

Theorem 3.

There exist infinitely many primes of the form n^2+1 .

PROOF (indirect)

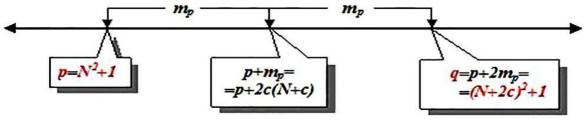
Suppose that N is the last natural number for which $p=N^2+1$ is the prime number. p is a prime number this implies that N^2+1 is odd, so it is sufficient to prove only for even *n*>*N*. Then the indirect condition can be written as follows:

 $\forall c \ge 1 \implies q = (\underbrace{N+2c}_n)^2 + 1$ not prime number (c is an integer) (15)

(16)
$$q = (\underbrace{N+2c}_{n})^{2} + 1 = \underbrace{N^{2}+1}_{p} + 4Nc + 4c^{2} = p + 4c(N+c)$$

It follows from Theorem 2. that there is a natural number c to which it is true

It follows from Theorem 2. that there is $m_p = 2c(N+c) \implies q = p + 2m_p \stackrel{(16)}{=} (\underbrace{N+2c}_{n \ge N})^2 + 1$ prime number (See Figure 1.)



However, this contradicts the indirect condition (15).

Q.E.D.

Application of the Dénes type Symmetric Prime Number theorem to proof of *there exist infinitely many primes of the form* n^2+1

Dénes, Tamás mathematician Email: <u>tdenest@freemail.hu</u>

The calculation of the first ten and the first few more than 1 million prime numbers of the form n^2+1 are demonstrated in Table 1.

Table	. 1.					9
N	$p = N^2 + 1$	С	$m_p=2c(N+c)$	$q=p+2m_p$	$q = (N+2c)^2 + 1$	Symmetr. primes
2	5 prime	1	6	17	17 prime	*
4	17 prime	1	10	37	37 prime	*
6	37 prime	1	14	65	65=5x13	
6	37 prime	2	32	101	101 prime	*
10	101 prime	1	22	145	145=5x29	
10	101 prime	2	48	197	197 prime	*
14	197 prime	1	30	257	257 prime	*
16	257 prime	1	34	325	325=5 ² x13	
16	257 prime	2	72	401	401 prime	*
20	401 prime	1	42	485	485=5x97	
20	401 prime	2	88	577	577 prime	*
24	577 prime	1	50	677	677 prime	*
26	677 prime	1	54	785	785=5x157	
26	677 prime	2	112	901	901=17x53	
26	677 prime	3	174	1.025	1.025=5 ² x41	
26	677 prime	4	240	1.157	1.157=13x89	
26	677 prime	5	310	1.297	1.297 prime	*
36	1.297 prime	1	74	1.445	1.445=5x17 ²	
36	1.297 prime	2	152	1.601	1.601 prime	*
•••						
1.004	1.008.017 prime	1	2.010	1.012.037	1.012.037	
1.004	1.008.017 prime	2	4.024	1.016.065	1.016.065=5x203.213	
1.004	1.008.017 prime	3	6.042	1.020.101	1.020.101 prime	*
1.010	1.020.101 prime	1	2.022	1.024.145	1.024.145=5x257x797	
1.010	1.020.101 prime	2	4.048	1.028.197	1.028.197=109x9.433	
1.010	1.020.101 prime	3	6.078	1.032.257	1.032.257=17x41x1.481	
1.010	1.020.101 prime	4	8.112	1.036.325	1.036.325=5 ² x41.453	
1.010	1.020.101 prime	5	10.150	1.040.401	1.040.401=101x10.301	
1.010	1.020.101 prime	6	12.192	1.044.485	1.044.485=5x13x16.069	
1.010	1.020.101 prime	7	14.238	1.048.577	1.048.577=17x61.681	
1.010	1.020.101 prime	8	16.288	1.052.677	1.052.677=61x17.257	
1.010	1.020.101 prime	9	18.342	1.056.785	1.056.785=5x241x877	
1.010	1.020.101 prime	10	20.400	1.060.901	1.060.901=37x53x541	
1.010	1.020.101 prime	11	22.462	1.065.025	1.065.025=5 ² x13x29x113	
1.010	1.020.101 prime	12	24.528	1.069.157	1.069.157=41x89x293	
1.010	1.020.101 prime	13	26.598	1.073.297	1.073.297 prime	*

Table 1.

Application of the Dénes type Symmetric Prime Number theorem to proof of *there exist infinitely many primes of the form* n^2+1

Dénes, Tamás mathematician Email: <u>tdenest@freemail.hu</u>

References

[Dénes 2002] Dénes, Tamás: Complementary prime-sieve, PUre Mathematics and Applications, Vol.12 (2002), No. 2, pp. 197-207 <u>http://www.titoktan.hu/_raktar/_e_vilagi_gondolatok/PUMA-CPS.pdf</u>
[Dénes 2017] Dénes, Tamás: Dénes type Symmetric Prime Number theorem and its application to proof of the Even Goldbach conjecture, <u>http://www.titoktan.hu/_raktar/_e_vilagi_gondolatok/DT-SymmPrime-theorem.pdf</u>