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Abstract

Necessary condition for u, being a Fibonacci prime is p being a
prime number, an other necessary condition by Theorem 1. of [3] for
up greater or equal 5 is a Fibonacci prime number if u, = 6k + 1 or
up = 6k — 1. If u, is not a prime number, then its prime factorization
form as u, = [[ (6r £ 1)(6s & 1) by C.P.S. (Theorem 2. of [3]) and does
not posses a factor which equal to a Fibonacci number. We are saying
in this paper on the Fibonacci pseudoprimes, on the Fibonacci twin
primes and on an important theorem which states: To every integer m
have an a, Fibonacci-type sequence, that holds m = a,,. Consequently
if the RSA modulus is a Fibonacci number, the cryptosystem is also
vulnerable.
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RSA cryptosystem

The RSA cryptosystem invented by Rivest, Shamir and Adleman, was first
published in the August 1977 issue of Scientific American. The cryptosys-
tem most commonly used for providing privacy and ensuring authenticity of
digital data.

We began by describing a simplied version of RSA encription. Let N=pg be
the product of two large primes of the same size, say [2] bits, each. Let e, d be
to positive integers satisfying ed=1 mod ¢(N) where p(N) =(p—1)(¢—1)
is the order of the multiplicate cyclic group of order ¢(N). A message is
element Me Z}*V((p), to encrypt M one should c=M¢ mod N.

To solve the ciphertext, the legitimate receiver computes ¢ = M mod
N. Indeed ¢? = M** = M mod N by Fermat (1601-1665) and Euler (1707-
1783) theorems.

Fermat little theorem:
If p is prime, then for any integer a, we have a1 =1 mod p

We say that a composite number n is a pseudoprime, if a® ' =a mod n

holds. (Holds for at least base a > 2 ).

Ezxamples:

n = 91 is a pseudoprime base 3, since 91 is composite number and 3% =
3 mod 91.
Similarly, 341 is a pseudoprime base 2, because 24 =2 mod 341.

For each integer a > 2 there are infinitely many pseudoprimes base a.

A composite integer n for which a” =a mod n for every integer (a,n) =1
is a Carmichael number. An integer n is a Carmichael number if and only
if n is positive, composite, square-free, and for each prime p divinding n we
have p — 1 divinding » — 1.

There are infinitely many Carmichael number.

Ezxamples:
Let us denote the Carmichael number by ¢; (i=1,2,3, ...), then ¢; = 561 =
3-11-17, ¢ =1105=5-13-17,¢3 = 1729 = 7-13-19, ¢4 = 2465 = 5-17-29.

In [8] one can find that the inadvertent use of a Carmichael number instead
of a prime factor in a modulus of an RSA cryptosystem is likely to make the
system totally vulnerable, but that such numbers may be deterted.



The first attack on an RSA public key (N, e) to consider is factoring of
the modulus N. But other attacks due to D.N. Lehmer (see [5],[10]) and G.J.
Simmons (see [9]) also exist.

Method of D.N.Lehmer is the following: Since N = pg = a? — b (p #
g, p,q > 2) Fermat’s Christmas theorem would apply:

We set ag = [\/N} , andlet ap=ag+k for k=123, ...

One looks succesively at a? — N, a3 — N, a2 — N, ... to see if any of
these is a perfect square. If one would suppose that N has two prime factors
than the iteration steps are decreased by approximately with %. Since N =
pg = (6u+1)(6vF1) (u,v=1,23,..) holds. In [5] S.W.Golomb gave
the number 8.616.460.799 the Jevons’ number. In [5] factorization of Jevons’
number was realized in 56 steps, by our method 19 steps might be required
to obtain the result (8.616.460.799= 689.681- 96.079)

It is worth mentioning when N=pq then N = +1 mod 6.

Although twenty years of research have led to a number of fascinating
attacks, none of them is devastating (see [1]).

For factoring, 155 digits is the current record for worst-case numbers. A
very famous factorization was of the 129-digit challenge number enunciated
in M.Gardner’s Mathematical Games column in 1977 (Scientific American).
The number

RSA129 =11438162575788886766923577997614661201021829672124236
25625618429357069352457338978305971235639587050589890
75147599290026879543541

had been laid as a test case for the then new RSA cryptosystem. Some
projected that 40 quadrillion years would be required to factor RSA129.
Nevertheless, in 1994 it was factored.

As follows:

34905295108476509491478496199038981334177646384933387843990820577
X
32769132993266709549961988190834461413177642967992942539798288533,

and the secret message was decrypted to reveal: "THE MAGIC WORDS
ARE SQUEAMISH OSSIFRAGE." The opinion of Gardner contradicts to
the facts.



A prime number p is said to be a strong prime if ¢ = 2p + 1 is also a prime
number. From the theorem 1. in [3] we have the following condition of strong
prime:

p is a strong prime iff p = 6k — 1 and ¢ = 12k — 1 is also a prime number
(k=1,2,3,...).

Ezxamples:

2 11 23
4 23 47
) 29 99
7 41 83

9 33 107

Remark. The product of two strong prime numbers equals to strong modulus.
Let us suppose that p and g are the strong primes. It follows that the N=pq
o(N)

is the strong modulus =;~.

Theorem 3.4.4. in [2] p 125. says:
(n)

For each odd composite integer n > 9 we have S(n) < £ where

S(n) = {a mod n : n is a strong pseudo prime base a}

An other "expert" has the opinion "I recommend against specifically gener-
ating strong primes. The length of primes is much more important than the
structure.”

The authors have the contrary opinion (see e.g. [5]).



Fibonacci numbers

If the modulus is a Fibonacci number the RSA cryptosystem is also vulner-
able.

We define the Fibonacci numbers as a sequence: u; = 1, us = 1, uz =
2, ug=3, us =05, ..., F={uy,us, us uq,us,..}

By other words it is recurrence relation where each number after the
second is the sum of the two preceding numbers in the sequence.

The formula in [7] p56 reads as follows: ug, = w2, —u2_; (n > 1)
implies ugp, = (Ups1 + Up1)(Uni1 — Up_1)

Ezample:  ugy = 6765, uyy =89, ug = 34 = (89 +34)(89 — 34) = 6765 =
123 - 55

Remark. If the modulus N = wus, then the factorization trivial from the
above.

Ezxample:
N:U8: (U5+U3)(U5—U3)= (5+2)(5—2)=73:21

Let us suppose that N have two prime factors (as it is usual, if N is an
RSA modulus), then n = 3k + 1 is the sufficiency condition of N = ugy,. It
follows from that property of Fibonacci numbers, which says that a Fibonacci
number is even iff its index is 3k form (ugy are always even) and each other
case are odd.

Ezxample:
n=6 = wujp = (ur+us)(ur —us) = (13+5)(13 — 5) = 18 - 8, where 18 and
8 are not prime numbers.

Trivially the above result can be generalized as follows:
!

_ 2 2
D Ugi = Uy —Ugpy k21
i—k

4
Example: > ug = ug + uig + ug = ul — ul + vk —ui + vl — vl =ul -l

If we take 4 = 1 and wus = 3 we have 1, 3, 4, 7, 11, 18, 29, 47,...
which we shall call the Lucas sequence, in honor of the nineteenth cen-
tury French mathematician E.Lucas. Formula I; ([7] p 56) says as follows:
Uoy = Upl, where [, — nth element of Lucas sequence. The modulus
(N=pq) happened to be a Fobonacci number uy, then the prime factors are
Uy, respectively ,,.



Ezample: ug=21 wus=3 l4=7 = 21=3-7
By u, = P Fibonacci prime we define that P is a prime number.

Necessary condition for u, being a Fibonacci prime is p being a prime number.
It is immediate since every Fibonacci number u; devides every Fibonacci
number u,; for n=1,2.3,... or if r is divisable by s, there u, divisable by u,
(see Theorem III. p 39 [7]).
An other necessary condition (by [3] Theorem 1.) for u, > 5 is a Fibonacci
prime number if u, = 6k £ 1.
If u, is not a prime number, then its prime factorization form as u, =
[](6r +1)(6s+ 1) (by [3] Theorem 2.) and does not posses a factor which
equal to a Fibonacci number. The sufficient condition for u, being a Fi-
bonacci prime is as given below.

If p is prime then

up_1 =0 mod p when p=+4+1 mod 5

Upy1 =0 mod p when p=4+2 mod 5

u, =0 mod p when p=0 mod 5 hold.

(see Theorem 3.5.1. p 131 of [2])
The Fibonacci pseudoprime test is not just a curiosity. It is the sufficiency
condition of u, (p is a prime number) being a Fibonacci prime.
a
Up—e, Where ¢, the Legendre symbol (g)

For odd prime p the Legendre symbol ﬁ is defined as
p

=< 1 if aisaquadtratic residue mod p
—11if a isaquadratic nonresidue mod p

<a> 0 if a=0 mod p

Up—
up” P =u, mod u, .,

We say that a composite number is a Fibonacci pseudoprime if the above
equality holds. In p 57 of [7] one can find the formula which says u, 1u,+1 =
u2 + (—=1)" n > 1. That formula gives opportunity to introduce the Fi-
bonacci twin primes.



Consider the case of twin primes, meaning two primes that differ by 2.
Let p and p + 2 be twin primes if v, and u,.» Fibonacci numbers also
prime numbers then we called u,, u,i2 Fibonacci twin primes. By Fibonacci
twin primes says the above formula as follows: ugg_1ugr+1 = ugk + (—1)6’c =
s k>1

The existence of Fibonacci twin primes is equvivalent to s with two prime
factors.

Ezxamples:
us =5, uy =13, ui+1=65— 65=5-13
uy; = 89, w3 = 233, w?, +1=20737 — 20737 =89 -233

Let us denote n(s) the number of squares Fibonacci numbers, n(pw) the
number of Fibonacci twin primes, n(Pw) the number of twin primes.
Obviously n(s) < n(pw) < n(Pw) holds.

The formula (56 p [7]) reads as follows: ug,1 = uZ,, +u2 n > 1 implies
that d > 1 the common divisor of u,,; and u, ,us2,1 can be represented as
a product (see pp 234-235 of [4]. Theorem III. p 39 of [4] (see pp 22-29 of
[11]) as follows: wu, is divisible by u,, if and only if n is divisible by m.

Ezxamples:

u =u; mod ug = 13" =13 mod 21
u =u;; mod ug = 89 =89 mod 55

In such a way it is not safe the modulus (of RSA system) equal to Fibonacci
prime.
See [4] p 234 2 +y? = n implies (22 + y?)(uv? +v?) = (zu —yv)? + (vy + yv)?

A prime number of form 4k+1 has a natural number ¢, c2+1=0 mod p
Related to RSA system the modulus N=pq (¢ + 1)(c2+1) =0 mod pq
(see [7] p 42).
We say that the a, is a Fibonacci-type sequence, if a;, a, are arbitrary
natural numbers and a, = a,_1 + ap_2 .
The connection of Fibonacci-type number and Fibonacci number is the above
equality:

Ap = Q1 * Up—2 + Q2 * Up—1
Theorem.:

To every integer m have an a, Fibonacci-type sequence, that holds m =
G-



Open problem:

The m = a, is not a unique correspondence, thus the following open
problem is very important in the cryptography:

m is a given natural number. Which is the maximal n index of Fibonacci-
type sequence like that m = a,,”

Ezxample:

m=18 — a =6, a=6, a3=12, a4=18(n =4)

— a1 =2, a2=1 a3=3, ags=4, a5=7 a =11, a7 =
18 (n=17)
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Fibonacci numbers u;

UL W N = =

8

13

21

34

35

89

144

233

377

610

987

1.597
2.584
4.181
6.765
10.946
17.711
28.657
46.368
75.025
121.393
196.418
317.811
514.229
832.040
1.346.269
2.178.309
3.524.578

APPENDIX

Prime representation

prime

prime

prime (6k — 1)
23

prime (6k + 1)
3-7

217

5-11

prime (6k — 1)
24.32 =122
prime (6k — 1)
13-29
2-5-61
3-7-47

prime (6k + 1)
23.17-19
37-113
3:5-11-41
2-13-421

89 -199

prime (6k + 1)
25.32.7.23
52 - 3001

233 -521
2-17-53-109
3-13-29-281
prime (6k — 1)
23.5-11-31-61
957 - 2417
3-7-47-2207
2-89-19801



34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
a0
ol
52
33
o4
35
96
57
98
99
60
61
62
63
64
65
66
67
68
69
70
71

5.702.887
9.227.465
14.930.352
24.157.817
39.088.169
63.245.986
102.334.155
165.580.141
267.914.296
433.494.437
701.408.733
1.134.903.170
1.836.311.903
2.971.215.073
4.807.526.976
7.778.742.049
12.586.269.025
20.365.011.074
32.951.280.099
53.316.291.173
86.267.571.272
139.583.862.445
225.851.433.717
365.435.296.162
591.286.729.879
956.722.026.041
1.548.008.755.920
2.504.730.781.961
4.052.739.537.881
6.557.470.319.842
10.610.209.857.723
17.167.680.177.565
27.777.890.035.288
44.945.570.212.853
72.723.460.248.141
117.669.030.460.994
190.392.490.709.135
308.061.521.170.129

1597 - 3571

5-13 - 141961
24.3%.17-19- 107
73-149 - 2221
37-113-9349
2-233-135721
3-5-7-11-41-2161
2789 - 59369
23-.13-29-211-421
prime (6k — 1)
3-43-89-199- 307
2-5-17-61-109441

139 - 461 - 28657

prime (6k + 1)
20.32.7.23-47-1103
13-97-6168709
52-11-101-151-3001
21597 - 6376021
3-233-521-90481

953 - 55945741
23-17-19-53-109 - 5779
5-89-661 -474541
3-7%-13-29-281- 14503
2-37-113-797 - 54833

59 - 19489 - 514229

353 - 2710260697
24.32.5.11-31-41-61-2521
4513 - 555003497

557 - 2417 - 3010349
2-13-17-421- 35239681
3-7-47-1087 - 2207 - 4481
5-233-14736206161
23-89-199-9901 - 19801
269 - 116849 - 1429913
3-67-1597 - 3571 - 63443
2-137-829 - 18077 - 28657
5-11-13-29-71-911- 141961
6673 - 46165371073
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72
73
74
75

498.454.011.879.264
806.515.533.049.393
1.304.969.544.928.657
2.111.485.077.978.050

25.3%.7.17-19-23-107- 103681
prime (6k + 1)

73 - 149 - 2221 - 54018521
2-5%-61-3001 - 230686501
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