Sd-effect appearing in the genetic code, as the structural explanation of 20 triplets instead of $\mathbf{6 4}$

Tamás T.Dénes mathematician
(email: tdenest@freemail.hu)
Nature has built its genetic code on 4 bases, these are $\boldsymbol{A}=$ adenine, $\boldsymbol{T}=$ thymine, $\boldsymbol{G}=$ guanine, $\boldsymbol{C}=$ cytosine. The genetic alphabet is built from structures of three of these bases: triplets. As the three spaces in each triplet are made up from one of these 4 bases, so does the number of its combinations based on a simple mathematical formula: $4^{3}=64$.
Curiously, nature has only used just over 20 of this 64 letter alphabet to write the book of living beings ${ }^{1}$. For today's science this is an empirical fact which shows that nature often cannot be described in quantitative mathematical terms.
We will show below that the Structure-difference effect ${ }^{2}$ ($S d$-effect) applied for structures defined by four elements (graphs) leads to the exact solution followed by nature itself.

Consider all non isomorphic undirected graphs ${ }^{3}$ of 4 vertices (see figures 1.1.-1.12.).

0 edge graph	$\begin{array}{rr} \hline \text { figure 1.1. } \bigcirc & \bigcirc \\ \bigcirc & \bigcirc \\ \hline \end{array}$		
1 edge graph	figure 1.2.		
2 edges graph	figure 1.3. O \qquad O \qquad	figure 1.4.	
3 edges graph		figure 1.6	figure 1.7
4 edges graph	figure 1.8	figure 1.9 .	
5 edges graph	figure 1.10	figure 1.11	
6 edges graph			

[^0]$S d=$ Structure-difference, and if G_{l} and G_{2} are undirected simple graphs, then
\[

$$
\begin{equation*}
\operatorname{Sd}\left(G_{1}, G_{2}\right)=\mid\left(G _ { 1 } \cup G _ { 2 } \left|-\left|G_{1} \cap G_{2}\right|\right.\right. \tag{1}
\end{equation*}
$$

\]

Figure 1.1.-1.12. introduces all the 12 possible basic structures of the 4 base molecules. According to the Sd-effect theorem the triplets are constituted from these 12 basic structures in such a way that the Sd-number of the three basic structures in one triplet (the structuredifference) is minimal.

LEMMA

Let G_{1}, G_{2}, G_{3} be non isomorphic undirected simple graphs with n vertices, then

$$
\begin{equation*}
\min \left(\operatorname{Sd}\left(G_{1}, G_{2}\right)+\operatorname{Sd}\left(G_{1}, G_{3}\right)+\operatorname{Sd}\left(G_{2}, G_{3}\right)\right)=4 \tag{2}
\end{equation*}
$$

Proof
As the graphs are not isomorphic, the $S d$-number of any two of them is at least 1 . We have proven that out of three $S d$-number, at least one is 2 .

$$
\begin{align*}
& S d\left(G_{1}, G_{2}\right)=1 \Rightarrow G_{2}=G_{l} \oplus e \tag{3}\\
& \operatorname{Sd}\left(G_{2}, G_{3}\right)=1 \Rightarrow G_{3}=G_{2} \oplus f\left(f \neq e, \text { because } e \in G_{2}\right) \tag{4}\\
& G_{3} \Theta G_{l}=G_{2} \oplus f \ominus G_{l}=G_{l} \oplus e \oplus f \Theta G_{l}=e \oplus f \Rightarrow \operatorname{Sd}\left(G_{1}, G_{3}\right)=2 \tag{5}
\end{align*}
$$

Q.E.D.

The next theorem can also be deduced from the above Lemma.

THEOREM 1.

If we choose arbitrary three combinations of 4 point basic structures out of Figures 1.1.-1.12., then the minimum sum of the $S d$-number of each pair of three structures will be 4 .

The Figures 2.1., 2.2., 2.3., ..., 2.24. will show all the possible structure triads (out of the above basic structures) where the sum of $S d$ is 4 .
By doing so, we apply the Sd-effect to the linking structures of base molecules. In other words, our model uses the coding machanism of nature (structural code) rather than quantitative combinatorics. The latter one showing possibilities of theoretical model which results in the question: If there are 64 possibilities, why does nature only use 20?

The simple fact is that the simple model of combinatorics is not suitable to describe the creation of triplets. Our structural model based on $S d$-effect, on the other hand, shows exactly $20(+4)$ triplets, as it is in real life. ${ }^{4}$

The combinatoric model should not be applied for the four „names" of amino acids, but to their linking structures. This explains that the bases of life variety is not 64 triplets but the result of the following combinatorial calculation:

[^1]The number of all 4 element structures (not isomorph structures) $=2^{2^{4}} \cdot 4!=1.572 .864$
The triplets are created by choosing three of these.
The number of possible choices $=\binom{2^{2^{4}} \cdot 4!}{3}=648.517 .109 .391 .294 .464$ which is 108.086 .184 times the living population of the world today!

If the possible number of structures in one triplet is so great, we can easily understand the enormous variety in DNA chain where there are tens of thousands of these triplets linked together. This is the combinatoric explanation of the real variety in living beings.

Key to Figures 2.1-2.24:
$\mathrm{A}=$ adenine (red), $\mathrm{T}=$ hymine (yellow), $\mathrm{G}=$ guanine (blue), $\mathrm{C}=$ cytosine (green)

\mathbf{G}_{1}	$\mathbf{G}_{\mathbf{2}}$	\mathbf{G}_{3}	$\begin{gathered} \sum \begin{array}{c} \boldsymbol{S d}=S d\left(\boldsymbol{G}_{l}, \boldsymbol{G}_{2}\right)+ \\ +\boldsymbol{S d}\left(\boldsymbol{G}_{l}, \boldsymbol{G}_{3}\right)+ \\ +\boldsymbol{S d}\left(\boldsymbol{G}_{2}, \boldsymbol{G}_{3}\right) \end{array} \\ \hline \end{gathered}$
$\left\lvert\, \begin{array}{rr}\text { figure 2.1. } & \bigcirc \\ 0 & \bigcirc\end{array}\right.$	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}$	$\begin{aligned} & 0 _0 \\ & 0-0 \end{aligned}$	$\sum \mathrm{Sd}=4$
$\left\lvert\, \begin{array}{rr} \text { figure 2.2. } 0 & 0 \\ 0 & 0 \end{array}\right.$	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}$		$\sum \mathrm{Sd}=4$
$\begin{array}{rr} \text { figure } 2.3 . & 0 \\ 0 & 0 \end{array}$	$\begin{aligned} & 0 _0 \\ & 0-0 \end{aligned}$		$\sum S d=4$
$\left\lvert\, \begin{array}{cc} \text { figure 2.4. } & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right.$		0	$\sum S d=4$
$\left\lvert\, \begin{array}{rr} \text { figure } 2.5 . & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right.$			$\sum \mathrm{Sd}=4$
$\left\lvert\, \begin{array}{ccc} \text { figue 2.6. } & 0 & 0 \\ & 0 & 0 \end{array}\right.$			$\sum \mathrm{Sd}=4$
$\left\lvert\, \begin{array}{cc} \text { figure } 2.7 . & 0 \\ 0 & 0 \end{array}\right.$			$\sum \mathrm{Sd}=4$

figure 2.8. \qquad 0			$\sum \mathrm{Sd}=4$
figure 2.9. \qquad 0			$\sum \mathrm{Sd}=4$
figure 2.10.			$\sum \mathrm{Sd}=4$
figure 2.11.			$\sum \mathrm{Sd}=4$
figure 2.12.			$\sum \mathrm{Sd}=4$

figure 2.13.
figure 2.20.

From among the above cases the first and second (see G_{l} on fig. 2.1.-2.2.) are degenerate structure, does not appear in the reality because of this. The same one is true for the last G_{3} on fig. 2.24. Thus the number of the possible cases are 21, from among which the nature uses one as a sign separating only. Thus it is the structural answer to the title's problem. ${ }^{5}$

Budapest (Hungary), 2007. december 28.
Tamás T.Dénes

[^2]
[^0]: ${ }^{1}$ Interestingly, the most economical language in the world: English uses 26 letters in its alphabet too.
 ${ }^{2}$ It is the fundamental theorem of the present author's multistructure theory.
 ${ }^{3}$ The graphs G_{1} and G_{2} are isomorphic if there is a one to one correspondence between vertices of G_{1} and those of G_{2} with the property that the number of edges joining any two vertices of G_{1} is equal to the number of edges joining the corresponding vertices of G_{2}.

[^1]: ${ }^{4}$ The extra four triplets being the dividing symbols in the code.

[^2]: 5 „Today it is still an unsolved scientific question why the four bases applied in three spaces in the genetic code define only 20 amino acids instead of 64 in the living material?"

