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1. Basic notions

In general the cryptology is based on fields whictare commutative and associative.
There is a method which studies the evolution of tferences during encryption of pairs
of plaintexts, and derives the most likely keys frm a pool of many pairs. It is called
differential cryptanalysis. Differential cryptanaly sis can also be used to find collisions in
"hash" functions. For DES (Data Encryption Standard) like cryptosystems the
differences are usually in terms of exclusive or ofhe intermediate data in the pair.
Differential cryptanalysis might apply "meet in the middle attack” (introduced in [2]).

Definition 1.1.

Meet in the Middle Attack: An attack in which the evolution of the data is tidied from
both directions: from the plaintext forwards towards an intermediate round and from
the ciphertext backwards towards the same intermedie round. If the results at the
intermediate round are not the same in both directins, then the tested value of the key
is not the real value. If both results are the sama several encryptions, then the tested
value of the key is the real value with high probaitity.

Details in cryptography one can learn e.g.14].
The latin squares are the tools for generalizationsf finite field (see[6]).

Definition 1.2.

A finite set J on which two binary operations aredefined (+) and €) such J is aloop
with respect to the operation (+) with identity éement 0 say, J\O is a group with
respect to the operation «) and for which the distributive laws a(b+c)=ab+ac and

(b+c)a=ba+ca (a,b,d1J) hold, is called aneofield.



A neofield is not necessarily commutative or assative. Neofield can be applied in
cryptology (see[6]). Neofields were first introduced by L.J.Paige in1949. In [3] the
applications of algebraic systems without associaity and commutativity has been
predicted to apply in the future.

The number of latin squares without associativity ad commutativity is much larger
than group tables (see e.q1]).

The cryptosystems based on quasigroups are as falls:

equipment of hardware encryption (patent[8] theoretical construction [4],[7]), hash
function (see[5]), transposition cipher (seg10]), Hamming distences (sefll)).

A cipher system based on neofield (s¢€]).

In the remaining part of the this paper we shall mation an algorithm of zero knowledge
proof based on latin squares.

2. Zero Knowledge Protocol

The classical method of authenticating a person bymeans of a machine is the use of a
password (PIN number). There are many problems invived with the improper use of
passwords. More sophisticated than simple passwordthe challenge-and-response
protocol.

It's hard to believe, but procedures exist that enlle user A to convince user B that he
knows a secret without giving B the faintest ideaf what the secret is.

Such procedures are naturally enough calledero knowledge protocols.

Jean-Jacques Quisquater and Louis Guillou explainero-knowledge with a story about
a cave (se¢13]). The cave, illustrated in Figure 1. has a secret.
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Figure 1.

Someone who knows the magic words can open the ssodoor between C and D. To
everyone else, both passages lead to dead ends.

Peggy knows the secret of the cave. She wants tmpe her knowledge to Victor, but she
doesn't want to reveal the magic words. Here's howhe convinces him:

(1) Victor stands at point A.
(2) Peggy walks all the way into the cave, eithéo point C or point D.
(3) After Peggy has disappeared into the cave, \far walks to point B.
(4) Victor shouts to Peggy, asking her either to:
(&) come out of the left passage or
(b) come out of the right passage.
(5) Peggy complies, using the magic words to op#re secret door if she has to.
(6) Peggy and Victor repeat steps (1) through5) n times.



3. DD Algorithm

Assume the users(u,,u,,...,u,) form a network.

u; has public-key L, , L‘ui (denote two isotopic latin squares at ordem) and secret-key
|, (denotes the isotopism ofL, upon L‘ui ).

u; wants to proove identity for u; but he doesn't want to reveal the secret-key (zero
knowledge proof).

1. u; randomly permutes L, to produce another latin square H.
2. u; sends H tou;.
3. u; asks u; either to:
a. prove that H and L, are isotopic,
b. prove that H and L, are isotopic.
4. u; complies. He either
a. prove that H and L‘ui are isotopic,
b. prove that H and L, are isotopic.
5.u; and u; repeatsteps 1. through 4n times.

One of the present authors gave a lecture on DD Adgthm in 1996 at USC (Los
Angeles), Prof L. Welch made a comment.

Prof L. Welch said that the security of the schemearying on latin squares which used
as a public-keys. Strongest so called pan-Hamiltosun latin squares. Pan-Hamiltonian
latin squares are introduced by J. Wanless (s4&5]).

Definition 3.1.
A latin square L at order n is apan-Hamiltonian if every row cycle of L has length
n.

Pan-Hamiltonian squares have applications besideshé cryptography in the
combinatorics. These squares have no proper subrectgles.

Pan-Hamiltonian latin squares has been called a Gppe latin squares (seq7]). When n

is not prime, a C-type nxn latin square cannot & a group table. For all n>7, there

exists a C-type latin square of ordem that is not group table (seg7]).

Infinitely many values of p prime (p=11 and p=2mod3) there exists a C-type

latin square of order p which cannot based on a group (s4&]).



In [12] gave what is believed to be the first publishedxample of a symmetric 11x11
latin square (see Figure 2.) which, although not djic, has the property that the
permutation between any two rows is an 11-cyclenl [12] there was proved how this
11x11 latin square can be obtained by a general constetion for nxn latin square
where n is prime with n>11.

01 2 4 8 510 9 7 3 6
1 6 3 5 9 10 0 2 8 4 7
2 3 1 6 10 7 9 0 4 5
4 5 6 2 1 9 3 7 0 8 10
8 9 10 1 4 2 7 6 3 0 5
l=5 10 7 9 2 8 4 3 1 6 0
10 0 9 3 7 4 5 8 6 2 1
9 2 0 7 6 3 8 10 5 1 4
7 8 4 0 3 1 6 5 9 10 2
3 45 8 0 6 2 1 10 7 9
6 7 8 10 5 0 1 4 2 9 3
Figure 2.

One of the present authors introduced an algorithimin [9]. (This algorithm has been
called DT algorithm.) The DT algorithm lexicography listed all elements of the
symmetric group of degreen (S,) (m,1,,...,7t,, OS,).



DT algorithm can be demonstrated (n=4) in Figure 3

1. [12 3 4 7. 31 4 2
2. 12 1 3 4 8. 1 3|42
3. 231 4 9 1 4| 3|2
4 |13 21 4 10. 4132
5. 31 2 4 11. 4 3 1 2
6. |11 32 4 12 3.4 1 2
13 1[43 21 10. 2 4 1 3
4. 13 4 21 20. 4 21 3
15,13 2 4 1 21 41 2 3
6. 12 3 41 22. 1 4]2|3
17112 4 31 23, 1 2 4 3
18. |14 2 31 24, 21 4 3

Figura.

The correspondence one to one the permutations oedree n and natural numbers 1
to n! . DT algorithm has the property for arbitrary natu ral number 1<m< (n-1)!

there corresponds a single subset 0§, containing n permutations, which are the rows
of a latin square of ordern (see (1) ). These latin squares (denoteDL ,(n)) uniquely
determines the row permutations as follows:



Tt

m
T[(n—l)!+m

T[Z(n—l)!+m

(1) DL, (n) = . 1<sm<(n-1)!  mOS

| Tin-)(n-1)1+m |

A subset of latin squares of ordern (DL, (n)) will defined by two parameters (n,m).

Consequently to store or transmission of the latirsquare is not neccesarily the original
matrix. Simirarly to this property is really applic able to zero-knowledge-proof in the

cryptography.

The Wilson theorem:
If p is prime number, then

(3) (p-1)'+1=0 modp holds.
Applying the Wilson theorem to the DT algorithm (e (9) ), then we have the next
theorem:

Theorem 1.
If p is prime number, then the DL (p) are pan-Hamiltonian squares.

Examples:

n is a prime: n=5 and m=1

Y 1 2 3 45

T, 2 4153

4) DL,5)=|my|= 4 5 2 3 1
T, 5 3 41 2

| To7 | 315 2 14




n=5 but the latin square is not DL, (n) type:

m, 12345
m,| 45213
5) LE)=|m,|= 53421
Me| 3 415 2
M. 21534

o _[(14y238)  _(15)234 _(13)(245 (12345
| 41) 523 7 " |51)| 342 T = 31 452 M= 21) 534

From the point of view of cryptology the DL, (n) type latin squares have a further
property that is stronger than the pan-Hamiltonian squares: Every pair of DL (n)

n
rows (and columns, its number {ZJ) is a cycle of lengthn (se€e[9]).
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