Complementary prime-sieve (C.P.S.)
 
 
free-lance 
    expert
    
     
    
    
e-mail: tdenest@freemail.hu
 
 
ABSTRACT
 
The above mentioned 
"complementary prime-sieve" (for short: C.P.S.) can be
characterized as follows:
a necessary sufficient condition is given for  natural numbers of forms 6k+1 and 6k-1 (k=1,2,3,...) when they
will be composite numbers. 
Theorems  1. and 2. imply a
short elemetary proof of the infinity of the prime numbers.  C.P.S. does not need the use of Dirichlet's
theorem. 
With the aid of  C.P.S. we are
able to generate the prime numbers without factorization and we give an
estimate for  the cardinality of primes
less then  X  (notation: ), where  X is an arbitrary natural number.
 ), where  X is an arbitrary natural number.     
 
 
Theorem  1.
Every prime
number   has the forms  6k+1
or  6k-1  where k = 1,2,3,...
  has the forms  6k+1
or  6k-1  where k = 1,2,3,... 
 
Proof:
Let us suppose that  p  is not of the forms  6k+1 or 
6k-1, this implies:
 
(1.1)                  p= 6k+2    or  
p= 6k-2          p
is an even number, therefore it is a composite number.
 
(1.2)                  p= 6k+3    or  
p= 6k-3          p
is divisible  3, therefore it is a
composite number. 
 
(1.3)                  p= 6k+4    vagy   p= 6k-4      p is an even
number, therefore it is a composite number.
 
(1.4)                  p= 6k+5    vagy  
p= 6k-5       p= 6k+5 =
6(k+1)-1  or   p= 6k-5 = 6(k-1)+1
   p= 6k+5 =
6(k+1)-1  or   p= 6k-5 = 6(k-1)+1  
 
these are the forms
of the theorem.
                                                                                                                 
Q.E.D.
 
 
Remark:
Dirichlet's
theorem states that "If (a,b)=1, then the arithmetic progression  ak+b  (k=1,2,3,...)  contains infinitely many primes."  But our  theorem  states that 
every primes are of the forms  6k+1 or  6k-1. 
    
     
    
    
According to the Theorem 1. the natural numbers can be ordered in six columns (see Figure 1.), where the first and the fifth column contain all prime numbers (the first column contains of the forms 6k+1 and the fifth column contains 6k-1).
 
 
Figure 1.
    
     
    
    
|  6k+1  | 6k-1 | ||||
| 1 | 2 | 3 | 4 | 5 | 6 | 
| 7 | 8 | 9 | 10 | 11 | 12 | 
| 13 | 14 | 15 | 16 | 17 | 18 | 
| 19 | 20 | 21 | 22 | 23 | 24 | 
| 25 | 26 | 27 | 28 | 29 | 30 | 
| 31 | 32 | 33 | 34 | 35 | 36 | 
| 37 | 38 | 39 | 40 | 41 | 42 | 
| 43 | 44 | 45 | 46 | 47 | 48 | 
| 49 | 50 | 51 | 52 | 53 | 54 | 
| 55 | 56 | 57 | 58 | 59 | 60 | 
| 61 | 62 | 63 | 64 | 65 | 66 | 
| 67 | 68 | 69 | 70 | 71 | 72 | 
| 73 | 74 | 75 | 76 | 77 | 78 | 
| 79 | 80 | 81 | 82 | 83 | 84 | 
| 85 | 86 | 87 | 88 | 89 | 90 | 
| 91 | 92 | 93 | 94 | 95 | 96 | 
| 97 | 98 | 99 | 100 | 101 | 102 | 
| . . . | 
 
Theorem 1.  implies a direct upper bound of the
cardinality of prime numbers not exceeding 
N   ( ):
):
 
(1.5)                                         
  
    
 
 
As a result of  Theorem 1.  the determination of  prime numbers  p makes it possible to enumerate the numbers of the form
 makes it possible to enumerate the numbers of the form    .
 . 
Below  (see  Theorem 2.) 
we give necessary and sufficient conditions when the numbers of the
forms   are composite
numbers.  These conditions give the
procedure which can be called  C.P.S.
  are composite
numbers.  These conditions give the
procedure which can be called  C.P.S.
 
Theorem 2.   (Complementary Prime-Sieve: C.P.S.)
 
Let us suppose
that  N, k, u, v  are natural numbers, where  u,v  1.
1.
N= 6k+1  is a composite number iff     k =  6uv + u + v     or    k= 6uv - u - v    
N= 6k -1  is a composite number iff    k =  6uv -  u + v     or   
k= 6uv +u - v    holds.
 
Proof of necessity:
Let us suppose  that 
N= 6k+1  is a composite number,
then  6k+1 = dr   k=
 k= holds. There are
two options:
   holds. There are
two options:
 
(2.1)    
  d= 6u+1  and
 d= 6u+1  and   
 
   r= 6v+1
  r= 6v+1  
 
             k=
  k=  =
= =  6uv + u + v
=  6uv + u + v
 
(2.2)     d= 6u-1  and
 d= 6u-1  and   
 r= 6v-1
  r= 6v-1
 
             k=
  k=  =
=  = 6uv -u -v
= 6uv -u -v
 
 
If  N= 6k-1 is a composite number, then  6k-1= dr 
 k=
 k=  holds.
   holds.
There are two
options:
 
(2.3)          
   d= 6u+1   and
  d= 6u+1   and  
 
   r= 6v-1
  r= 6v-1   
           k=
  k=  =
 =   =  6uv -u + v
=  6uv -u + v
 
This formula  (2.3) is symmetric for  u, v, so there is another solution:  
 
(2.4)          k= 6uv + u - v
 
We proved the proof
of necessity.
 
 
Proof of sufficiency:
Let us suppose  that 
k= 6uv+u+v  and  N= 6k+1, as well as   v=u+r , 
where   
  , then
 , then
 
(2.5)          N=6(6u(u+r)+u+u+r)+1 = 6(6 +6ur+2u+r)+1 =
+6ur+2u+r)+1 =  =
=
                  = =  (6u+1)(6v+1)    it
is trivially not a prime.
=  (6u+1)(6v+1)    it
is trivially not a prime.
 
Let us suppose
that  k= 6uv-u-v  and 
N= 6k+1, as well as  v=u+r,  where  
 , then
, then
 
(2.6)         N=6(6u(u+r)-u-(u+r))+1 = 6(6 +6ur-2u-r)+1 =
+6ur-2u-r)+1 =  =
=
                 = =  (6u-1)(6v-1)   it is trivially not a prime.
=  (6u-1)(6v-1)   it is trivially not a prime.
 
 
 
Let us suppose
that  k=6uv-u+v   and 
N= 6k-1, as well as  v=u+r,  where   
 , then
, then
 
(2.7)           N=6(6u(u+r)-u+u+r)-1 = 6(6 +6ur+r)-1 =
+6ur+r)-1 =  =
=
                   =(6u+1)(6u-1)+6r(6u+1) =
(6u+1)(6u-1+6r) =  (6u+1)(6v-1)   it
is trivially not a prime.
 
 
Let us suppose
that  k=6uv+u-v   and  
N=6k-1, as well as  v=u+r,  where   
 , then
, then
 
(2.8)          N=6(6u(u+r)+u-(u+r))-1 = 6(6 +6ur-r)-1 =
+6ur-r)-1 =  =
=
                  =(6u+1)(6u-1)+6r(6u-1) =
(6u-1)(6u+1+6r) =  (6u-1)(6v+1)     it
is trivially not a prime.
          
Q.E.D.
 
Corollary  3.
As a result of Formulaes  (2.5)
- (2.8)  the natural number  N=  is represented as a
product of
  is represented as a
product of   .
. 
If   6u-1, 6u+1, 6v-1, 6v+1  are prime numbers (by Theorem 1.), then we
obtaine prime factorization of  N.
 
If we induce the
notations   a=6u+1   and  
b=6u-1, then all   can be represented
as one of the
  can be represented
as one of the
following forms (2.9):
 
(2.9)         
         
          
            
 
Example:      u=23, 
r=29  a=139,  b=137
  a=139,  b=137  
 
   = 139x313= 43507
= 139x313= 43507    = 137x311= 42607
= 137x311= 42607  
                                                                                       
 = 139x311= 43229
= 139x311= 43229    = 137x313= 42881
= 137x313= 42881                              
 
Corollary  4.
According to that  always holds and
using the notations introduced in corollary 3
  always holds and
using the notations introduced in corollary 3 
 except when   r=0
  except when   r=0  .
 .
Checking the
magnitudes of   we can obtain the
matrix exhibited below  (see  Figure 
2.).
  we can obtain the
matrix exhibited below  (see  Figure 
2.).
 
|  >0 | consequently |  | 
|  | consequently |  | 
|  | consequently |  | 
|  | consequently |  | 
|  | consequently |  | 
|  | consequently |  | 
  Figure 2.
|  |  |  |  | |
|  | - | > | > | > | 
|  | < | - | < | < | 
|  | < | > | - |  | 
|  | < | > |  | - | 
 
In such a way the
relation     always holds.
     always holds.
Theorem  1. and 2. imply a short elementary
proof  of  the infinity of  the prime
numbers:
 
Corollary  5.
The cardinality of prime
numbers are infinite.
 
Proof  (indirect):
Let us suppose that the
cardinality of prime numbers are finite.
Theorem 1. is
sufficient to investigate natural numbers of the forms    .
.
Let us denote maximal element of prime numbers with  P=6K+1. Consequently all   natural numbers are
composite.
  natural numbers are
composite.
By Theorem 2.
(see  formulaes  (2.5), (2.6), (2.7), (2.8) )   p 
factorized into at least two prime factors as follows:  where     all
     where     all       and
and   are primes.
  are primes.
The indirect
statement implies that all    consequently
   consequently       
Thus the cardinality of  the
natural numbers of form   are finite, but it
is not true. Consequently K doesn’t exist, thus the indirect statement is
false.
  are finite, but it
is not true. Consequently K doesn’t exist, thus the indirect statement is
false.  
The use of form  6k+1 is enough to complete the proof, but we
could follow the same way with the use of  
6k-1. 
 
                                                                                                                                                                Q.E.D.
Corollary  6.
By formulaes   (2.5) - (2.8)  we are investigating the
cardinality of  composite numbers of
forms  6k+1 and  6k-1 up to 
N. It means that we are investigating the inequality  (i= 1,2,3,4).
 (i= 1,2,3,4).
 
(2.10)     (6u+1)(6u+1+6r)
  (6u+1)(6u+1+6r)  
   
 
(2.11)    
 
 
(2.12)     (6u-1)(6u-1+6r)
  (6u-1)(6u-1+6r)  
    
 
(2.13)     
 
 
(2.14)      (6u+1)(6u-1+6r)
  (6u+1)(6u-1+6r)   
    
 
(2.15)     
 
 
(2.16)      (6u-1)(6u+1+6r)
   (6u-1)(6u+1+6r)   
    
 
(2.17)     
 
 
By formulae    (i=1,2,3,4) , the
pair  u,v  is symmetrical. Clearly
in case of
  (i=1,2,3,4) , the
pair  u,v  is symmetrical. Clearly
in case of    for
  for   the values of
 the values of   determine all
composite numbers of form  6k+1 and   6k-1. 
That implies the formulae below :
   determine all
composite numbers of form  6k+1 and   6k-1. 
That implies the formulae below :
 
(2.18)     consequently
   consequently   
 
 
(2.19)     consequently
   consequently   
 
 
(2.20)     consequently
   consequently   
Let us introduce the
notation   , that will denote the number of  composite numbers for which
, that will denote the number of  composite numbers for which   

 holds.
  holds.
 
(2.21)                   
    
 
(2.22)                  
   
 
(2.23)                  
    
 
(2.24)                  
    
 
 
(2.25)                 
 
 
The proof mentioned
above ensured the necessity only i.e. 
producing all different pairs  (u,v).
That makes the occurrence of the composite number possible more than
once. Let us denote the number of composite numbers up to  N with  .  m(N)  denotes the composite numbers’ occurrence
more than once.
.  m(N)  denotes the composite numbers’ occurrence
more than once.
 
(2.26)                 
 
Let us denote with KP(N)  the
number of prime numbers obtained with the aid of  C.P.S.:
 
(2.27)                  KP(N) =  
 
If we know the exact value of  
m(N)  that implies the  formulae 
(2.28):    
(2.28)                     =  KP(N)
  =  KP(N)
 
 
Corollary  7.
Formulae   (2.21) - (2.25)  imply an approximation of K(N).  Easy to see that  formula (2.29)   holds.
 
(2.29)           as
well as
                  as
well as               
Without  losing the generality
of the formulae   (2.21) - (2.24)  we can use the value  to sum:
 to sum:
 
(2.30)    K(N)=
(2.31)    If 
a= 6u+1  and   b= 6u-1 
 
              = 
 
              =   
 
 
 
Easy to see that   
   , in such a way for  K(N) 
the result is the following:
 , in such a way for  K(N) 
the result is the following:
 
(2.32)     
 
 
The approximation of  inequalities might
be used  (2.33)  (see [5]
at  p 6.):
  inequalities might
be used  (2.33)  (see [5]
at  p 6.):
 
(2.33)                    
 
We obtained as
below  (2.34):
 
(2.34)        
 
Let us suppose that
mean of (2.34)  left and right side is
the approximation of  K(N)  (denote: KK(N) ).
 
(2.35)                                =
 =  
 
  
 
 
 
Corollary  8.
Similarly to formulae   (2.10) -
(2.17)  we shall investigate the inequalities   (i= 1,2,3,4)   where
  (i= 1,2,3,4)   where  is a natural number.
  is a natural number.
 
(2.36)                
 
 
(2.37)               
 
(2.38)               
 
(2.39)               
 
 
Obviously the above mentioned formulae is defined in the interval  (M,N). Let us introduce the notation    (i=1,2,3,4) that
will denote the number of pairs  (u,v) 
composite numbers included in the interval  (M,N):
   (i=1,2,3,4) that
will denote the number of pairs  (u,v) 
composite numbers included in the interval  (M,N):
 
(2.40)                   
    
 
(2.41)                  
   
 
(2.42)                  
    
 
(2.43)                  
    
 
 
(2.44)                 
 
Below we  give the equivalent
formulae for  (2.26), (2.27), (2.32),
(2.35)  in arbitrary interval  (M,N):
 
 
(2.45)                 
 
 
(2.46)                  KP(M,N) =  
 
 (2.47)    
K(M,N)=
                             = 
 
 
 
   , thus we give
for  K(M,N):
 , thus we give
for  K(M,N):
 
 
(2.48)     
 
 
For the approximation
of   we can apply the
mean value of formulae (2.33):
   we can apply the
mean value of formulae (2.33):
 
 (2.49)                                KK(M,N) =  
 
 
If   N=6k+1 or  N=6k-1 
is a composite number, then  two
factorable representations of   N  by  
(2.49)  maximum steps are needed:
 
(2.50)                               
 
 
C.P.S.  gives a direct representation of composite
numbers in an interval  (M,N). Consequently one can obtain
the prime numbers of interval 
(M,N).  
By that
approach one can obtain efficient methods to solve three basic tasks about the
prime numbers:
1. Given an interval  (M,N). 
Enumerate all prime numbers from that interval.
2. Let us represent the
prime numbers up to  N. (Then  M=1)
3. Decide whether a natural
number   p  is a prime itself.
 
In RSA  (Rivest, Shamir, Adleman) cryptosystem the
tasks 1-3  might be used with practical
values.  In a forthcoming paper we shall
hopefully return to that applications.        
 
Open problems
and conjectures:
What is an
exact value of m(N) ?  or 
What is a good approximate of  m(N) ?
These questions are equivalent the following problem:
Let us the following equalities 
k1=v(6u+1)+u, k2=v(6u-1)-u, k3=v(6u-1)+u,
k4=v(6u+1)-u . If 
(C an arbitrary natural number) and  then how many time
are there
 then how many time
are there   ?
?
 
Conjecture 1.
:  KP(N)  approximates   .
.
 
Conjecture 2.:
 The relative
error of  KP(N) and  are better than
  are better than   .
.
Figure 3.  demonstrate the paper's results on the
cardinality of prime numbers.
 
Figure 3. 
| N | K(N) | KK(N) | m(N) | KP(N) |  | 
 | KP(N) rel.err. (%) | 
 rel.err. (%) | 
| 1.000 | 205 | 195 | 34 | 162 | 168 | 144 | 3.5 | 14.3 | 
| 2.000 | 484 | 461 | 112 | 294 | 303 | 263 | 3.0 | 13.2 | 
| 3.000 | 794 | 755 | 214 | 420 | 430 | 375 | 2.3 | 12.8 | 
| 4.000 | 1.118 | 1.067 | 325 | 540 | 552 | 482 | 2.2 | 12.7 | 
| 5.000 | 1.452 | 1.394 | 442 | 656 | 669 | 587 | 2.0 | 12.3 | 
| 6.000 | 1.807 | 1.731 | 577 | 770 | 783 | 690 | 1.7 | 11.8 | 
| 7.000 | 2.160 | 2.077 | 713 | 886 | 900 | 791 | 1.5 | 12.1 | 
| 8.000 | 2.532 | 2.431 | 857 | 991 | 1.007 | 890 | 1.5 | 11.6 | 
| 9.000 | 2.905 | 2.792 | 1.006 | 1.101 | 1.117 | 988 | 1.4 | 11.5 | 
| 10.000 | 3.281 | 3.159 | 1.160 | 1.212 | 1.229 | 1.086 | 1.4 | 11.6 | 
| .11.000 | 3.666 | 3.531 | 1.316 | 1.316 | 1.335 | 1.182 | 1.4 | 11.5 | 
| 12.000 | 4.055 | 3.909 | 1.474 | 1.419 | 1.438 | 1.278 | 1.3 | 11.1 | 
| 13.000 | 4.454 | 4.291 | 1.648 | 1.527 | 1.547 | 1.372 | 1.3 | 11.3 | 
| 14.000 | 4.850 | 4.677 | 1.815 | 1.631 | 1.652 | 1.466 | 1.2 | 11.3 | 
| 30.000 | 11.641 | 11.266 | 4.891 | 3.250 | 3.245 | 2.910 | 0.2 | 10.3 | 
| 50.000 | 20.796 | 20.175 | 9.263 | 5.133 | 5.133 | 4.621 | 0.0 | 10.0 | 
| 70.000 | 30.409 | 29.537 | 14.013 | 6.937 | 6.935 | 6.275 | 0.0 | 9.5 | 
| 90.000 | 40.335 | 39.220 | 19.053 | 8.718 | 8.713 | 7.890 | 0.0 | 9.4 | 
| 190.000 | 92.971 | 90.619 | 46.813 | 17.175 | 17.170 | 15.632 | 0.0 | 8.9 | 
| 350.000 | 183.080 | 178.739 | 96.357 | 29.943 | 29.977 | 27.417 | 0.1 | 8.5 | 
| 900.000 | 517.786 | 506.647 | 289.266 | 71.480 | 71.274 | 65.645 | 0.1 | 7.9 | 
| 1.000.000 | 581.158 | 568.777 | 326.493 | 78.668 | 78.498 | 72.382 | 0.2 | 7.8 | 
| 1.500.000 | 905.437 | 886.863 | 520.366 | 114.929 | 114.155 | 105.478 | 0.6 | 7.6 | 
| 2.000.000 | 1.239.132 | 1.214.375 | 721.684 | 149.218 | 148.933 | 137.849 | 0.2 | 7.4 | 
| 3.000.000 | 1.926.146 | 1.889.011 | 1.143.113 | 216.967 | 216.818 | 201.152 | 0.6 | 7.2 | 
| 4.000.000 | 2.632.033 | 2.582.508 | 1.581.846 | 283.146 | 283.148 | 263.127 | 0.0 | 7.0 | 
| 5.000.000 | 3.351.917 | 3.290.031 | 2.033.930 | 348.679 | 348.515 | 324.150 | 0.4 | 7.0 | 
| 6.000.000 | 4.083.022 | 4.008.733 | 2.495.735 | 412.713 | 412.851 | 384.436 | 0.3 | 6.9 | 
| 7.000.000 | 4.823.413 | 4.736.732 | 2.966.794 | 476.714 | 476.650 | 444.122 | 0.1 | 6.8 | 
| 8.000.000 | 5.571.739 | 5.472.690 | 3.445.726 | 540.653 | 539.779 | 503.304 | 0.1 | 6.7 | 
| 10.000.000 | 7.088.528 | 6.964.708 | 4.416.529 | 661.334 | 664.579 | 620.421 | 0.4 | 6.6 | 
References
[1]  T.Dénes:  New results in RSA key decryption
                       (in
Hungarian)  Híradástechnika, 2002/1.
47-55
 
[2]  T.Dénes:  Complementary Prime Sive and a remark on
S.W.Golomb’s factorization method
                      
(manuscript)
 
[3]  S.W.Golomb: FAX massage to  J.Dénes  
(dated  21.07.2000.)
                               
Problem E969: American Math. Monthly, (vol 58. no.5. p 338.) 1951.
 
[4]  S.W. Golomb, On factoring
Jevons’ number
                               
CRYPTOLOGIA, vol XX. No3 1996
 
[5]  P. Erdős, J. Surányi:  Selected chapters from the theory of numbers
                                               (in Hungarian)    Polygon, Szeged, 1996.
 
[6]  Maria Suzuki:  Alternative Formulations of the Twin Prime Problem
 The Amer. Math. Monthly, Vol. 107. 
    january 2000.